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“Research 1s the process of going up alleys
to see i1f they are blind.”

Marston Bates



What to do when in ensemble filters
when prior is obviously hon-Gaussian?

O

O OO OO0 e}
Cycled EnKF can create non-Gaussian states, especially when (a) ensemble size is
large, and (b) when the forecast model contains significant nonlinearity. See Lawson and
Hansen, MWR, 2004; Mitchell and Houtekamer, MWR, 2009 and Anderson, MWR, 2010.
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Gaussian distributions easy.
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Most common data assimilation updates are well behaved when prior and observation are
normally distributed, as shown here, with an analytical solution for this 1-D problem. .



Estimating prior as fully non-Gaussian may
work when state dimension is small.
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Here ensemble is used to estimate probability density in 2-D, which is then
Bayesian updated to an observation in one component. Approaches

such as these are computationally and scientifically impractical for

large dimensional systems, e.g., “curse of dimensionality.”

from Hamill, chapter 6 in “Predictability of Weather and Climate”



Flavors of non-Gaussianity
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(1) Ensemble non-Gaussian, but
very high correlation between state
components, i.e, effectively
non-Gaussian only in 1 direction.

(potentially solveable, & intended
focus of this talk)
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(2) Ensemble non-Gaussian, curved
attractor

(well beyond my current capabilities
& available computational resources)



Two insights of Jeff Anderson
relevant to non-Gaussian data
assimilation (of the first type)

(1) Serial ensemble filters can split the update into
two steps (Anderson, MWR, 2003) :

(a)Update prior at observation location to the
observation

(b) Regress increments to the rest of the state to the
updated observation prior.



Insight 2: only in updating the observation prior,
relax the Gaussianity assumption.
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FI1G. 6. Schematic of first phase of rank histogram filter algo-
rithm. The locations of five prior ensemble members are indicated
by large asterisks at the bottom. The continuous approximation to
the prior probability density is indicated by the four shaded boxes
and the shaded portions of Gaussians on the tails. The continuous
likelihood is the dashed line with the values at the ensemble
members marked by small asterisks.
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FI1G. 7. Schematic of the rank histogram filter algorithm. The
prior and posterior ensembles along with the posterior from an
ensemble adjustment Kalman filter are marked by asterisks at the
bottom. The continuous approximation to the prior probability
density is shaded. The dashed line is a piecewise linear interior
approximation to the likelihood. The continuous posterior proba-
bility distribution is the thick solid line.

“Rank Histogram Filter” -- a probability mass of 1 / (n+1) is assigned between each
ensemble member observation prior. Given the observation likelihood (dashed),
piecewise construct a product of the prior and likelihood. For it" sorted observation prior,
determine the value associated with the posterior CDF ati / (n+1). This replaces step (1) of

Anderson (2003). From Anderson, MWR, (2010).



Time Mean RMS Error

Anderson’s tests with Lorenz ‘96 model
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Make a non-Gaussian
filter as good

as EAKF at

\‘ small ens sizes?

Still as good as EnKF

at large ens sizes?
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F=8.0; fixed localization
“half width” of 12 grid points.

Observations
V= (x]. X )2+ Normal(0,4), j=1,...,

Adaptive spatially varying
inflation following Anderson,
Tellus, 2009.

Note poor performance of
both RHF and EnKF when
ensemble size is 10 (see
Whitaker and Hamill MWR
2002), poor performance of
EAKF when ensemble size is
large (Lawson and Hansen,
MWR 2003).



Possible errors introduced with
rank histogram filter (RHF)

* Ensembles may, due to sampling variability,
have large or small deviations between
members. Are there consequences of having
1/(n+1) probability between each?
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same 1/(n+1)
probability mass
between both?



Example of rank

histogram filter obs prior update

Likelihood
e HX, prior ensemble

©
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e HX, posterior,
rank histogram filter
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Surprisingly, the gap between the 1st and 2nd ensemble member in the prior
is obliterated with the rank histogram filter.
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Kernel density approach?

* Model observation prior with kernel density
estimation techniques.
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source: Wikipedia, “kernel density estimation.”



Probability density
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(a) Example of kernel density update
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Example of observation
prior update with
“kernel density filter”
(KDF)

If prior ensemble is significantly
non-Gaussian (as determined
through Kolmogorov-Smirnov test)
then replace standard ensemble
filter’s obs prior update with KDF
update. Model the observation
prior (black lines, panel a) with
kernel density estimation. Construct
posterior as product of prior and
likelihood (panel a). Generate
posterior members by finding the
ensemble members’ quantiles in the
prior cdf. Posterior members

are the values associated with those
quantiles in posterior cdf (panel b).
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When to apply KDF

* |t’s much more expensive than EnKF, EnSRF,
EnAF for updating obs prior.

* My choice: use only when observation prior is
statistically significantly non-Gaussian
(Kolmogorov-Smirnov test, a=0.05)

* Departures from Gaussianity more commonly

determined to be significant with large
ensemble sizes than with small.



Testing in Lorenz '96 model

* Classic L96 model, 40 variables, perfect model,
F=8.0, dt = 0.05, cycle for 10 years after
spinup.

 Test EnKF, EnSRF, EnAF/KDF, EnAF/RHF over

range of localization length scales, ensemble
sizes.

 Covariance inflation : 1 + 1./nanals®°



Lorenz ‘96, perfect model

(obs 0=5.0, 6 h between obs, obs every grid point)

Size | EnKF | fraction | EnSRF | KDF RHF fraction
RMS fail K-S RMS RMS RMS fail K-S
error test €rror error error test

10 1.524 | 0.0 1.480 1.480 | 1.480 | 0.0

20 1.316 | 0.0001 1.310 1.285 | 1.304 | 0.0007

40 1.226 | 0.0002 1.214 1.206 | 1.205 | 0.005

80 1.165 | 0.004 1.169 1.142 | 1.139 | 0.04

160 | 1.133 | 0.03 1.157 1.117 | 1.126 | 0.15

320 | 1.114 | 0.13 1.156 1.122 | 1.164 | 0.31

640 | 1.102 | 0.31 1.159 1.180 | 1.185 | 0.62

(1) RHF/EAKF and KDF/EAKF not employed at smallest ensemble sizes since
departures from Gaussianity not detected. Same error as EnSRF.

(2) Surprisingly, benefit of RHF/EAKF & KDF/EAKF over EnSRF is at moderate ensemble
sizes, with degradation at large ensemble sizes. 16



Lorenz ‘96, perfect model

(obs 0=5.0, 6 h between obs, obs every grid point)

Size | EnKF | fraction | EnSRF | KDF RHF fraction
RMS fail K-S RMS RMS RMS fail K-S
error test error error error test

10 1.524 | 0.0 1.480 1.480 | 1.480 | 0.0

20 1.316 | 0.0001 1.310 1.285 | 1.304 | 0.0007

40 1.226 | 0.0002 1.214 1.206 | 1.205 | 0.005

80 1.165 | 0.004 1.169 1.142 | 1.139 | 0.04

160 | 1.133 | 0.03 1.157 1.117 | 1.126 | 0.15

320 | 1.114 | 0.13 1.156 1.122 | 1.164 | 0.31

640 | 1.102 | 0.31 1.159 1.180 | 1.185 | 0.62

EnKF detects non-Gaussianity less frequently than deterministic filters.
For typical 50-100 members, non-Gaussian conditions virtually never
diagnosed.
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( ) EnKF Update
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Lawson &
Hansen’s insight
using lkeda Map
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EnKF & effect of perturbed
observations creates more
normally distributed posterior,
while EnSRF compresses but
keeps curved prior shape.

(EnAF/KDF or EnAF/RHF would
do something similar).

Lawson & Hansen,
MWR, 2004. 18




Tests of KDF in global primitive
equation model

 Tested in 2-level dry global PE model recently used in
Hamill and Whitaker (2011 MWR). Same uniform
observation network. Imperfect model assumption.

e Bottom line: effectively no change from using EnSRF
data assimilation to using EnSRF/KDF data assimilation.

— Reason is that KDF is virtually never invoked, since only

invoked when prior is significantly non-Gaussian. EnSRF
consistently used.

* Admittedly, it’s still a toy model w/o moisture, other
complicating aspects.



Why is non-Gaussianity actually more
rare than one might think?

* (1) In practical NWP applications, we often
account for model error or sampling variability
through additive noise with Gaussian

properties.

P> = MP*MT + Q
X°=Mx+e, e~ N(0,Q)



Why is non-Gaussianity actually more
rare than one might think?

* (2) Ensemble forecast members in more
complex models may project onto several
modes, some growing, some decaying. This
may randomize the perturbation structures.

old perturbation,
slowly decaying

P overall perturbation, superposition of
old decaying structures and new growing ones

new, rapidly
growing perturbation

21



Conclusions

* Many previous researchers have dashed
themselves to pieces trying to surf the reef that is

non-Gaussian data assimi

* Some oldies but goodies,
& deterministic filters wit

ation (me too).
ike perturbed-obs EnKF

N noise to account for

model and sampling error, continue to be hard to
beat for NWP applications.

e Possible increased relevance of non-Gaussian
techniques as ensemble filters begin to deal with
moisture-related variables.



KDF technical detail.

* Q: How does one determine the kernel type and width
used?

* A: Gaussian kernel used, but may not be a critical detail.
Optimal width is a function of ensemble size, smaller for
large sizes. The optimal width estimated by repeatedly:

— creating an ensemble drawn from standard normal.
— choosing kernel width, creating pdf estimate.

— evaluating the integrated square error (ISE) of the estimated to
the analytical cdf.

— finally, for a given ensemble size, choose the width “w” that has
the lowest average integrated square error.

— width that’s actually used for an ensemble with a spread of s is
S*w.



